Emotion Detection Project.
All About Human Emotion detection.
This is the implementation of already trained model that I have trained.
import tensorflow as tf
from keras.preprocessing import image as image_utils
from keras.models import load_model
import numpy as np
import imutils
import time
import cv2
- Loading Required model that is haarcascade_frontalface_default.xml for detecting face and epoch_75.hdf5 is for detecting emotion which I have already trained.
- Also giving the labels for different emotions.
- You can download a pretrained model from here
detector = cv2.CascadeClassifier("./haarcascade_frontalface_default.xml")
model = load_model("./epoch_75.hdf5")
EMOTIONS = ["Angry", "Scared", "Happy", "Sad", "Surprised", "Neutral"]
# If a video path was not supplies, grab the reference to the webcam.
camera = cv2.VideoCapture(0)
time.sleep(2.0)
We are applying OpenCV to read a frame from a video and predicting using pre trained model.
while True:
# grab the current Frame.
_, frame = camera.read()
# resize the frame and convert it to grayscale
frame = imutils.resize(frame, width=300)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# initialize the canvas for the visualization, then clone
# the frame so we can draw on it.
canvas = np.zeros((220, 300, 3), dtype="uint8")
frameClone = frame.copy()
# Detect faces in the input frame, then clone the frame so that
# we can draw on it
rects = detector.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=5, minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE)
# Ensure at least one face was found before continuing.
if len(rects) > 0:
# determine the largest face area
rect = sorted(rects, reverse=True,
key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0]
(fX, fY, fW, fH) = rect
# extract the face ROI from the image, then preprocess
# it for the network
roi = gray[fY:fY + fH, fX:fX + fW]
roi = cv2.resize(roi, (48, 48))
roi = roi.astype("float") / 255.0
roi = tf.keras.preprocessing.image.img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
# Make a prediction on the ROI,then lookup the class
# label
preds = model.predict(roi)[0]
label = EMOTIONS[preds.argmax()]
print(label)
# Loop over the labels + probabilities and draw them
for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)):
# Construct the label text
text = "{}: {:.2f}%".format(emotion, prob * 100)
# Draw the label + probability bar on the canvas
w = int(prob * 300)
cv2.rectangle(canvas, (5, (i * 35) + 5),
(w, (i * 35) + 35), (0, 0, 255), -1)
cv2.putText(canvas, text, (10, (i * 35) + 23),
cv2.FONT_HERSHEY_SIMPLEX, 0.45,
(2, 180, 48), 2)
# draw the label on the frame
cv2.putText(frameClone, label, (fX, fY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (252, 247, 48), 2)
cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH),
(0, 0, 255), 2)
# show our classifications + probabilities
cv2.imshow("Face", frameClone)
cv2.imshow("Probabilities", canvas)
# if the ’q’ key is pressed, stop the loop
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()